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1. Introduction

"

:; Models employed in evaluation or stipulation of regulatory policies involving competition and/or
0.‘

,. differing objectives of competing parties have sometimes been seriously deficient in accounting for

‘ interations between the parties' strategies or in allowing for multiple objectives. Classical game-theoretical
Wy

‘,'.' models, wherein the strategy set is the topological product of the individual parties stragy sets, do not
o

" treat such situations. They can however be handled by the new "dominance cones" method and class of
P

§ solutions (Charnes, Cooper, Wei and Huang [2]) to such extensions of classical games. Herein we extend
W

|
{E the "C2WH" method to obtain more general results looking forward to resolution (in a later paper) of a
10

()

Y, competitive situation in transportation with interacting strategy sets [4].

]

R

Harker (1986) 5] used the Variational inequality (Vi) method to discuss the Generalized Nash

)

:. Equilibrium Games (GNE) and gave an example in which only one solution can be found by (VI). Using the
W,

:; "dominance cones" method given in our paper, we can also find all the (GNE) solutions of the example
"

. given by Harker.

3

i..

.’.: 2. Nondominated Equilibrium Points

i)

1

I Definition 2.1: LetSbeasetin EM, thesetS*={ye EM: xTy <0 forall x € S} is called the negative
y polar cone of S.

'0

Definition 2,2: Let A be aconein EM. A is said to be "acute” if there exists an open half-space

0

" H={xeEM:alx>0, a=0}

s: such that

ol .

' AcHU({0}

)

4 Lemma2.1: Let A and A1 be conesin EM

(4

':;': 0 f A c Ay thenA’ > A;.

)
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(i) Int A* 2 ¢ fandonlyif A isacute.
(i)  When A isacute, Int A" = {ye EM:xTy < 0 forall xe A and x # 0} and
A~ (A) = {0}.

(iv) It A isaconvexcone, then (A*)* = A.
Definition 2.3: LetS beasetinEM,Xe S.
The tangency cone of S atx is denoted by T(S,X):

TS, x) = { he EM : there exists a sequence {xK} and a sequence { AK} such that

h = fim lk(x"-i('), where xke 8, Ay > 0 and fim Xx= i’}

k— e Ko

For definitions and properties of cones, polar cones and direction cones the reader is referred to
(11, (3], [6}, [7]. [8] and [3].
Definition 2.4: LetS be aconvex setin EM™, A be aconvex cone in EN. A real-valued vector function
G:S - E"is A-concaveon S if
G( 1x'+(1 ~?Jx2) -(XG(X’) +(1 -K)G(xz)) €A
forall x!,x2 e Sand A € (0,1).
Lemma22: Let A beaclosedconvexconein ER, Sbe aconvexsetin EM, G:S — EM be
differentiable in a open set which contains S. If G is A - concave on S, then for every
x!,x2 e S, we have
G(x‘) + V,(Cix’)(x2 - x‘) € G(xz) + A

Proot: Since G is A-concaveonS, forevery x!,x2 ¢ S

G(lx2+(1 -A)x‘) -(xe(x2)+(1 Nal( x‘)) € A forallde (0,1)
Thus
Glx)+ [G(x‘+x(x2-x1))-e(x‘)]/xe alxd + a
Letting A — 0*, we have

G(x‘)+ V,G(x‘) (xz-x‘) € G(xz) + A

Q.E.D.
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LetS be aconvexsetin EM, A beaconvexconein E?, G:S — EN. it G is A-concave

-
o

on S, thenforevery pe (-A*), PTGis concaveon S.

Since G is A-concaveon S,forall x',x2 e S andall A e (0,1), we have
Glaxt+(1-0x3 - (AGlx )+ (10 alxd) € A

Thus for every pe (-A*), we have
oG (nx"+ (1 -Nx?) 2 2T alx) (1 -A)pTelx?)

forall A € (0,1).

Q.E.D.

Let S be aconvex setin EM, A be aclosed convex conein E", G:S — EN. {f, for
arbitrary pe A*, PTGisconcave onS,then G is (-A)- concave on S.
Since for arbitrary pe A* and x,y € S, we have

pTG(Ax+{1-Ny) 2 2T Gl +{1-3)p'Gly) forall & € (0,1)

i.e.,

pT{G(xx+(1 -Ny) - {(AGx+(1 -‘A)G(y))} >0 foralk e (0,1)

By Lemma 2.1,
G(ax+(1-2)y) - (A + {1 -A)Gly) € «(A)‘ =-A
forall A € (0,1).

This means that G is (-A) -concaveon S.

A Multi-Payoff Constrained N-person Game In Normal Form

Definition 2,5: A multi-payoff constrained n-person game in normal form is given by n nonempty sets S;
in E" (i = 1,2, ..., n), the strategy sets ot the players 1, 2, ..., n; a real-valued vector function G =
(91, - Gm) T : S1x...xSp — EM, the cross-constraint function of the n players; for each player i
there is a real-valued vector function A's (A: e A II)T :81x..x8y > E [, the vector payoft

function of the ith player (i = 1,2, ...,n); aconvex cone K in EM, the constraint cone; a convex

cone W in E the dominance cone; R« = {X ={x1,...xa):Glx) € K, xje S, i = 1.2.-.~n},

the constraint set.
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Such a game will be denoted by

r={%. wia'..A",

Detinition 2.6: lLet T = {SKK, W; A‘, ...,An> be a multi-payoff constrained n-person game.
X = (X4,...,XJ € Rx is called a nondominated equilibrium point of the game TI" associated with
W fifthereexistspo x = (X, .., Xn) € Sq x...xSp satistying
(X1 oo Xio 10 X Xiy 1y ey X € Rk (i = 1,2,..., ) suchthat
A'(X1y, ..o Xn) € AYX4, ooy Kioty X Xigty oo Xn) + W
and
A' (X oo Xo) # A{Rsy oo Kot Xis Kiags oor Xn)
foralli = 1,..n.
Definition 2.7: Let T = {9(.(, W; A1, ...,An} be a multi-payoft constrained n-person game. Then I is
called a (W-K)-concave game if the following four conditions hold forall i = 1,2, ..., n:
) SiisaconvexsetinE '
(ii) Ai(x1, ..., Xn) is (-W)-concave with respectto xj on S; forfixed xj € Sj (j#i,j=1,2 ... n):
(ii) Ai(x1, ..., Xn) is continuous on S1x ... xSp.
(iv) G (x1, ..., Xn) is continuous and K-concave on S1x ... xSp.
In the remaining sections, except where specifically noted, we shall always use the following

symbols:

(1) Wh=Wx..xW, Wp,=WXx..xW 6 K,=Kx..xK_

—

n n n

Kn=KXx..xK and S = Sx...xSp;
(2) "Strictly nonzero” p € W, implies p = (p‘, ,,.,p") ., p'e W* andp =0 foral

i=1,2 ..,n
3) Qe -K, implies Q= (q',..q"). g e K, i=1,2 ..n

(4) x € S implies x=(x1, ..., xp) andx; € S forall i=1,2, ... n;
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(5)

(6)
(7)

9)

3 Lemma 3.1:

Forfixed x € R , let forall i=1,2,..,n
Dim = {X‘ € Si . (f,,...,ii_1, Xi, ii”, ceey ;n) € ‘.RK}

andlet DX 2 Dy x...xDp.

Clearly, forall i = 1,2, ...n, wehave DiXl cS;and DX} c S |

x € D(x) impliesfor x= (xq, .., Xp) that x; € D; (x) foralli=1,2,...,n

For a real-valued vector function G(x) = (g1(X), ..... gm(x))T, we denote the “gradient” of

G(x) (really, the vector of gradients of G's n component) by
v x91 x)

VXIG(x) = : , (x;isavector!)

VXIQ m (x)
For a specific p e W, , let

n . .
Fp(xy)= ZP'TA'(Yn cer Yie X Yigr o Yo fOrall (x,y) € SxS.

jm1
For a specific p € W, , the generalized Lagrangean function is defined as follows:

novo no
‘DP(X’Y: Q)= Ep| Al (yh o YinXuYisr-on Yf) + quTG(Yh cer Yier Xip Yiet oo YrJ

im1 [

forall (x,y) e SxS and Q € -K,,.

3. Computing Nondominated Equilibrium Points
In this section we outline a more general technique than was given previously in {2], which

enables us to capture additional nondominated equilibrium points.

1
Let T = {%K, W; A ....,A"}. be a (W-K)-concave game. If x € Ry is a nondominated

. equilibrium point of I" associated with W, then there exists strictly nonzero p € W, such that for

arbitrary x ¢ D(x}, we have

T . X
A X1, oo Kioy Xy Xiny.o X SpTA (K foral i=1,2,...,n
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Suppose that x ¢ Ry is a nondominated equilibrium point of I" associated with W. This

means that there exist 0o n nonzero w; € W(i=1,2,..,n) and X € D(x) such that
A LX) = A (X3, o, Xioty Xiy Xigr oo X + Wy forall i=1,2,...,n.

Foreach i=1,2, ..., n, consider
Aj= {z cE:z-A (K40 oot Xt X3 X1 o, X) + AN = W

forsome x ;e D;(x) andnonzero w,e W}

It is easy to show that A; is a convexsetand 0 ¢ A;. Hence by the separation theorem, there
exists nonzero p! € E! such that

T
xp 250 forall z € A;.

¢
i

Next, for arbitrary Xi € DilX} | nonzero wj ¢ W and A > 0, let

A

ZX,A.W, = Airx_h "-:;i-hxh;i&""v ;rJ - Alm +A-WI .

Z, w, € A; and

f.
A

4
‘w
-
[}
Yy

piTAi(i«‘, '“vii-h Xi,;i*«‘...,;,’ - piYAim +kpiTWiS0 ]

“u
®

il

v

pie W' Letting A — 0, weobtain
T . R
p‘ Al(;«‘, ...,;i_«‘, Xi,-X-N«‘...,;rJS ﬁTAI m forall i=1 ,2,..., 0.

Q.E.D.

AN A4 - ,‘.

Let T = (ERK, wW; A1,....An}. . X e Re and p e IntW,, if foraritrary x ¢ D(x). we

25 hd '.,.’ '.' -A‘
- -

-

T - - - T
p,AI(X1, ....Xi_1,xi,xi,1...,x')$ pIAlm (3.1)

g
[

Pl g
3

forall i=1,2,..,n, thenx is a nondominated equilibrium point of I' associated with W.

Proof: Suppose to the contrary that x is not a nondomonated equilibrium point of T
associated with W. That is , there exist x € D{x) and w; € W such that

Al(ﬂ =A i‘;h ...,fi-1,xi,ii,1...,§,\)+ w;, w;z0

N Ty e A
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7
forall i=1,2,..,n.
We note by Lemma 2.1 that W is an acute cone. By the acute property of W and Lemma 2.1, we
¢ .T
J have P'Wi< 0, hence
T R
. p'A'KI<p A Xy, ... Xiy X i, Xiy .o, Xforal i=1,..,n.
This contradicts (3.1).
Q.E.D.
;
Lemma 3.3: Let T = {%K, W; A ,...,An} be a (W-K)-concave game. If x ¢ Rx is a nondominated
equilibrium point of I associated with W, then there exists strictly nonzero p e W,: such that
ix, X) < W5lx, X} forall x € Dx)
Proof: By Lemma 3.1, there exists a strictly nonzero p € W,, such that for arbitrary x € D(x}
we have
T T
al A l(;«], ...,;5.1, X, ;i,” ,-ir’ < al A ‘m
forall i=1,2,..,n, then
h =i, = - = LI
Zp A (i1, ...,Xi_1,Xi,Xi+1...,X,-) < Zp A'(x)
im1
ie., W5, X) <¥50x,Xx)  forall x e D)
Q.E.D.
1 .
Lemma 3.4: Let T = {9(,(, W: A An} X € Rg and Al(x) be differentiable at x with respect to
xi forfixed Xy, ..., Xi.1, Xis1.... Xn (i=1, ..., n). Ifthere exists P € W, such that
¥5ix, X) < ¥5ix, x) foral x e D{x)
then
T . —
(V, .‘P;(x,i)L_,-J eT (D), x) li=1,...n)
Proof: For arbitrary h e T(D;(x), X}, there exists {x',‘} c D;lx) with
ko —
imX; = X;, andA,> 0 with A, — 0 suchthat
Koo
K _
1 h= limlk(xi'xi)
K~ on
. since W;(x,x) is differentiable at x , we have

‘I’;(xk.i) = ‘P;(xk, i) + Vxl‘{lg(x".i)

,_;(X'?-?i)+||x'?-i,” . (k)

e
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where xk= (i«\, ...,25.1,)(".(,;'.,1....?"). E(k) - 0 as k—)°°.
Since W5{x,x) 2 W5lx,x)  forall x e Ry . we have

Vi Wsix, X (x': - ii) +||x'{ - iil ec(k) < 0
then

V,I‘i‘;(x,ﬂ e lk (Xl: - ;,) + |M(x‘,‘ - ;.) .E(k) <0
Letting k — o=, we have

Vl I‘{’B(X,-X-) X-; h S 0
Hence

T . -
\2 :P;(x,i)L_;j e T (DX, X)
QE.D

Lemma 3.5 let T = {9?.(, W; A‘....,A"} be a (W-K)-concavegame and x e R¢ . Forall i=1,2,

... h, let Ai(x) be differentiable at X with respect to x; for fixed X1, oo Xioty Xy Xig 100y X (i=1,

... N). Ifthere exists p € W,, suchthat X satisfying

(Vx"{‘g(x,ﬂ x_;) ly-x) < 0 forall ye D(x),

then x is a nondominated equilibrium point of T" associated with W.
By Lemma 3.2, we only need to show that for all x € D(x), we have
B A Ky oo Kooty X1 Kiayorns K< PPA'R, 1= 1,0,
Suppose to the contrary that there exist ¥ € D{x) and some iy (i <io <n) such that
5';A'°(§1, oo Kige 1 X Xi 4 ...,En)> EQZA;"M. (3.2)

T _ _
Since T is a (W-K)-concave game, by Lemma 2.3, 5'°A'°(f1. ....X.,,-1.X;°,Xa°.1.--.Xn) is concave

with respect to Xi, and thus

T T T
EIOAIO(;M "";'o"'xlo‘;io«f1""in)s 5’0A'°m+ Elavth,o(x—,(y‘|o' ;(lo} (33)
Since
V, ¥, XN - ly-X)< 0 forall ye D(x,
Letting y= (;1.---yiio-1'xi°: ii‘,n----)?n) , we have
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Vx“‘{‘s(x,ﬂ

X=X (Vio-;io) <0

i.e., P o inoAlom (Vio' xio, <0
By (3.3), we have

—l |° — -— p— — —' 1
ploA (x1,...,xi°.1,xiyxi°,,,...,xn)s ploA’ (x)

This contradicts (3.2).

Q.E.D

Assuming X € Rg let

c
cilx) = {(VXIG(ﬂ) : qel-K*) suchthat q'G{x) = 0}
Lemma 3.6(11 Let X e R¢ and G(x) be differentiable at x .

Then
T(Di()_(),;i) C('C'i&))
Definition 3.1: A point x e Ry is said to be a "generalized regular point” of the constraint set Ry if

T*Df.X) c-C* ).

Detinition 3.2: If there exist

- - = n Na = . - .
X=Xy, ..,Xne E 'x..xE ", Qe K*, and strictly nonzero p € W*, such that

V@50 %Al 5= B VAW +§ VG0 =0 K€ S, @4

Vo, ®5x, %, Q) = G e K (3.3)
T i’

q Vo o5%0=F GR=0 3.6)

foralli=1, .., n, then we say that x, P, Ql satisties the “generalized Kuhn Tucker" conditions.

Theorem3.1: LetT = {sxK, W, A‘, ...,An} be a (W-K)-concave game. Furthermore, suppose that

x € Rk is a nondominated equilibrium point of I associated with W, and that ¥ is a "generalized

reqular point” of R, . Thenthere exist Q e-K

*

n and strictly nonzero P € W, such that

(x,p, Ql satisfies the generalized Kuhn - Tucker conditions (3.4) - (3.6).
Proof: By Lemma 3.3, there exists a striclly nonzero p € W, such that

¥5ix, X) < w5(x, X} foral x e D(x)
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Since x is a generalized regular point of %, and

T
(VX}I‘B{X.)_OL_;) eT'(D[),x) (seeLemma3d.4),

i m
there exist 4 € E  such that

LT
Vy, P5le, R, 5+ T VG =0
and
_i N i
gelk) g em=o0
foralli=1,2,...,n
i.e.,

LT . LT
=P Y, A®+T V,GK=0,% €8,

X=X

v, 5 (x,x,Q)

Ve,@5(x.%,Q) = G(J € K

T LT
q Ve o%,x Q=7 GK =0

1

-G .3 e«

Ol

forail i=1,2,..,n where

Q.E.D.
Theorem 3.2: Let T = {91.(, W; A’, ...,An} be a (W-K)-concave game, let K beclosedand x € Ry .

let Ai be differentiable at x with respectto x; for fixed X1 -+ Xj=1, Xi+™Xn and G(x) be
differentiable at x. Ifthere exist P € INtW, and Q e-K, suchthat (x,p, Q) satisfies the

generalized Kuhn-Tucker conditions (3.4) - (3.6), then x is @ nondominated equilibrium point of

I’ associated with W.

Proof: According to Lemma 3.5, it suffices to show that
V5%, %]z ly-¥ <0 foral ye D),

For arbitrary y € Ry, we have by Lemma 2.2,
Gix) + V,Gx)y - x) € Gyl + K

Hence

T
g AGKI(y-x) > 0 forany y € R
letting y =Xy oo Xict, Yio Xis 1o Xy € R, then

T
g A,GRy-X) 2 0 forally, e D&

A
\h-\-. h- '-.

oo
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and then .
V5t B, 5 bvi-X) =q' V. GRy-X) < 0
forall Yi€ DiX), i=1,2,..,n;
i.e.,
V¥, Mz ly-x) <0 foraly e DiX)
QE.D.

Now, let's consider the example in Harker's paper, the two -person game depicted in Fig. 1. Each
player chooses a number x; between 0 and 10, such that the sum of these numbers is less than or equal
to 15. Harker's utility functions and constraint functions are defined in our terms by:

A (X1 X = 3dx, - X, - (8/3) x X

Aglxy X3 = 24.25%, - X5 - (5/4) X x,

Gixy xg = (10- Xy, Xy, 10-Xp x5 15- x,-xz)T
Here W = E,K=E}, §=E Re={x=fx1,x3" Gfxs,xde K]
since G(x) is linear, for any point x e Rk, x is a generalized regualr point of Rk. It is easy to check t: at
r= (%K, W; A, Az} isa (W - K)-concave game. Hence by Theorem 3.1 and Theorem 3.2, these
nondominated equilibrium points of T' are points which satisfy the generalized Kuhn-Tucker conditio '3

(3.4) - (3.6) and vice-versa.

. T T
Let <b{x,y,k} = A1(x1’Y2) + Agly1.xj + 7~1 G(Xh)’z) + 7~2 G(thz)

where & = (1,29, 21 < (x}, x;)T, A% = (x%, xg)T.

Then the generalized Kuhn-Tucker conditions of T are to find (i X‘,Xz) satistying:
Vo @(x X, A, ;= 34-2%,-(8/3)%,- 11 + - A5=0
V. olx % A, ;= 24.25-2%,-(6/4)%,-25+ A5-05= 0
— - - - - — — T i
V1;<1>(x,x,.):) = (10-x1,x1,10-x2,x2,15-x1,x2) >20,A20,i=1,2.
-7 - - =i = - =i = -
A V@K, X, = M{10-X )+ AiXy+ A3[10-X5 + XiXp+Ai (15-X;-X4 = 0

Simplifying the above, this is equivalent to finding (i A' &% satistying the following system:

LA IR IS LS ]

N IS S PL ey o
L e o 5 R P el L L e

Y A ety

Al A XX

-

v wvy



e S S R g R e 8T 8 A%

34-2x,-(8/3)xp = Al-A3+Ad

24.25-2x,-(5/4)x, = A3-A2+ A2
11(10 -Xy) =0, x4 < 10, 11 >0,

l2X1 0, X1>0 k2>0 i=1,2

(Riggbat et vak at b baY Sabvat R 9e b

As{10-x) =0, X2 10,432 0, i=

AiXp=0,%220,A020,i=1,2

X5{15 -Xq- XQ 0, k5> 0,x3+X%2%

The constraint set R is illustrated in Fig. 1.

10

ITTIrIrnrruid

| A T I I |

15

solution set

Ta

10

Fig. 1.

We divide R¢ intosixparts Ij, i=0,1,2,3,4,5:

Ip= INtRg = {(x1,x2): 0<x;<10,0<X< 10, X +Xs < 15}

Iy = {(x1,x2): 0<x;$5,xp= 10}

(X1,X2) 5< X1 10 X1+X2—15}

(xs,x3: 0< xy<10, x2-0}

2= {
{(x,,xz) X;=0,0<x,< 5}
o= {
5= {Ix

(xpxd:x;=0,0<x;,< 10}.
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For each part 1j, using the complementary conditions (3.9) - (3.13) , it is easy to figure out which points
satisfy the system (3.7) - (3.13). The process is the following:
[ (1) Io: Since 0 <x1 <10, 0 <x2< 10 and x4 + x2 < 15, by (3.9) - (3.13) we have x}=o i=1,2,
N j=1,2,3,4,5. By (3.7) and (3.8), we have
34-2x,-(8/3)x,=0
24.25-2x,-(5/4)x, = 0
then (X1.X3 = (5.9) satisfies (3.7) - (3.13)

@ 1i:  Since 0 < xq <5 and xo=10, by (3.9) and (3.12) we have Ay=0, A,4=0.

By (3.7) and (3.8), we have
34-2X1-(80/3, = —l;-&-l; (3'14)
24.25-20'(5/4)X1 = )\.g +X§ (3'15)

@  xy=0. By(3.13) wehave As=0, i=1,2.
By (3.14) , Ay= 422/3) < 0, which contradicts (3.10).
)  xq = 5. by (3.10) we have A,=0, i=1,2.
By (3.14), A4 = 48/3) < 0, which contradicts (3.13).
©  O<xi<5. By(3.10) and (3.13) we have A;=As=0 (i=1,2) andthenby (3.14)
and (3.15), we have
Xy =11/3
7&; = -1/3 < 0 , which contradticts (3.11).
(3) Io: Since 5<x1<10 and x1 +x2 = 15 (obviously 0 < x2 = 15-x1 < 10), by (3.10) - (3.12)
we have
Ap=Aa=Ai=0,i=1,2.
then by (3.7) and (3.8) , we have
34-2x,-(8/3){15 x4 = Ay +Ad

24.25-2(15-x,)-(5/4)x, = A&

ie.,
As = (2/3)%,-6- A4 (3.16)
AZ= (3/4)x,-5.75 (3.17)

P ol %

)
< o =2
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1 @  xqy = 10. By (3.16) and (3.17) , we have 1
i ‘
»Y 1 1

A +hs = 2/3 (3.18) .
i' 2
¥ As=7/4 (3.19) X
i sowecanfind A1 20, 2320, A2 = 7/4 to satisfy (3.18) and (3.19), \
i.e., (10, 5) satisties the generalized Kuhn - Tucker conditions. .
: : R
» (b) x1 < 10. By (3.9) we have M= 0 i=1,2. Thenby(3.16) and (3.17), we have .
’ L4
s = (2/3)x,-6 3

o A = (3/4)x,-5.75 :
Ny !
'1: letting AL > 0,%2> 0, we have ,
A X129 and x, > 23/3 :
‘:0 but xq = 9 implies x12> 23/3.

g Combining (a) and (b), the segment !
)

) 12= {(x,,x):gsms10,x2=15-x1} ]
, is the solution set of system (3.7) - (3.13) in I, i.e., that satisfying the generalized 3
N Kuhn - Tucker conditions. “
) A
X (4) I3: Since x4 = 10, 0 < x2 < 5, by (3.10) - (3.13) we have .
. Ap=Ab=Mi=Ab=0  i=1,2 Y
i

" By (3.7) and (3.8) , we have

é

¢ 34-20-(8/3)x, = A

’ 24.25-2xp-50/4 = 0 .
\ ]
': then '.
k7 "
3 xp = 47/8 "
i A} =-5/3 <0, which contradicts (3.9). X
A (5) L Since 0 <x1<10,x2=0,by(3.10), (3.11) and (3.13) we have N
e , R . Q
. Aa=A3=As=0 , i=1,2 .
:}: By (3.7) and (3.8) , we have

g 34-2x, = A} 4
r‘ \]
" 24.25-(5/4), = - A2

:s‘ A
:: )
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(6) Is:

Then A4 = (5x,-97)/4 < 0 which contradicts (3.12).

Since x1 =0 and 0 <x3 < 10, by (3.9), (3.11) and (3.13), we have
AM=Aa=Ag=0 , i=1,2

By (3.7) and (3.8) , we have
34-(8/3k, =- A,

24.25-2x, = - A2

Then A; = (8x,-102)/3 < 0  which contradicts (3.10).

Hence combining (1) - (6), the solution set of system (3.7) - (3.13) is composed of

the point (5,9) and the interval [(9,6) , (10,5)].

By Theorem 3.1 and 3.2, the set of nondominated equilibrium points of I" associated

with W is composed of the point (5,9) and the interval [(9,6), (10,5)] (see fig. 1).
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